Ecosystem fluxes of hydrogen in a mid-latitude forest driven by soil microorganisms and plants.

نویسندگان

  • Laura K Meredith
  • Róisín Commane
  • Trevor F Keenan
  • Stephen T Klosterman
  • J William Munger
  • Pamela H Templer
  • Jianwu Tang
  • Steven C Wofsy
  • Ronald G Prinn
چکیده

Molecular hydrogen (H2 ) is an atmospheric trace gas with a large microbe-mediated soil sink, yet cycling of this compound throughout ecosystems is poorly understood. Measurements of the sources and sinks of H2 in various ecosystems are sparse, resulting in large uncertainties in the global H2 budget. Constraining the H2 cycle is critical to understanding its role in atmospheric chemistry and climate. We measured H2 fluxes at high frequency in a temperate mixed deciduous forest for 15 months using a tower-based flux-gradient approach to determine both the soil-atmosphere and the net ecosystem flux of H2 . We found that Harvard Forest is a net H2 sink (-1.4 ± 1.1 kg H2  ha-1 ) with soils as the dominant H2 sink (-2.0 ± 1.0 kg H2  ha-1 ) and aboveground canopy emissions as the dominant H2 source (+0.6 ± 0.8 kg H2  ha-1 ). Aboveground emissions of H2 were an unexpected and substantial component of the ecosystem H2 flux, reducing net ecosystem uptake by 30% of that calculated from soil uptake alone. Soil uptake was highly seasonal (July maximum, February minimum), positively correlated with soil temperature and negatively correlated with environmental variables relevant to diffusion into soils (i.e., soil moisture, snow depth, snow density). Soil microbial H2 uptake was correlated with rhizosphere respiration rates (r = 0.8, P < 0.001), and H2 metabolism yielded up to 2% of the energy gleaned by microbes from carbon substrate respiration. Here, we elucidate key processes controlling the biosphere-atmosphere exchange of H2 and raise new questions regarding the role of aboveground biomass as a source of atmospheric H2 and mechanisms linking soil H2 and carbon cycling. Results from this study should be incorporated into modeling efforts to predict the response of the H2 soil sink to changes in anthropogenic H2 emissions and shifting soil conditions with climate and land-use change.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soil warming and carbon-cycle feedbacks to the climate system.

In a decade-long soil warming experiment in a mid-latitude hardwood forest, we documented changes in soil carbon and nitrogen cycling in order to investigate the consequences of these changes for the climate system. Here we show that whereas soil warming accelerates soil organic matter decay and carbon dioxide fluxes to the atmosphere, this response is small and short-lived for a mid-latitude f...

متن کامل

Integrating scale and uncertainty to understand microbially derived agroecosystem processes

Soil microorganisms are largely responsible for biogeochemical fluxes in the terrestrial biosphere that effect ecosystem productivity and alter global climate patterns. Though the importance of soil microorganisms is easy to state, little is known about interactions between microbes necessary for the production of ecosystem-scale fluxes. Furthermore, measurement of biogeochemical fluxes at the ...

متن کامل

Assessment the effect of Slope aspect and position on some soil microbial indices in rangeland and forest

Extended abstract   Introduction   Topography is one of the effective factors in soil formation and development. Topographical features such as slope aspect and position, by affecting soil temperature, evaporation capacity, soil moisture content, soil organic matter, precipitation, movement, and accumulation of soil solution can impress soil microbial properties. For investigating the ...

متن کامل

Ecosystem fluxes of hydrogen: a comparison of flux-gradient methods

Our understanding of biosphere–atmosphere exchange has been considerably enhanced by eddy covariance measurements. However, there remain many trace gases, such as molecular hydrogen (H2), that lack suitable analytical methods to measure their fluxes by eddy covariance. In such cases, flux-gradient methods can be used to calculate ecosystem-scale fluxes from vertical concentration gradients. The...

متن کامل

Concentration and dD of molecular hydrogen in boreal forests: Ecosystem-scale systematics of atmospheric H2

[1] We examined the concentration and dD of atmospheric H2 in a boreal forest in interior Alaska to investigate the systematics of high latitude soil uptake at ecosystem scale. Samples collected during nighttime inversions exhibited vigorous H2 uptake, with concentration negatively correlated with the concentration of CO2 ( 0.8 to 1.2 ppb H2 per ppm CO2) and negatively correlated with dD of H2....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Global change biology

دوره 23 2  شماره 

صفحات  -

تاریخ انتشار 2017